留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性可编织Ti丝/TiO2纳米多孔膜光阳极的制备及其光电催化性能研究

李梦琦 李小龙 顾晓栋 沈忱思 张丽莎

李梦琦, 李小龙, 顾晓栋, 沈忱思, 张丽莎. 柔性可编织Ti丝/TiO2纳米多孔膜光阳极的制备及其光电催化性能研究[J]. 材料开发与应用, 2023, 38(6): 67-73.
引用本文: 李梦琦, 李小龙, 顾晓栋, 沈忱思, 张丽莎. 柔性可编织Ti丝/TiO2纳米多孔膜光阳极的制备及其光电催化性能研究[J]. 材料开发与应用, 2023, 38(6): 67-73.
LI Mengqi, LI Xiaolong, GU Xiaodong, SHEN Chensi, ZHANG Lisha. Study on Preparation of Flexible Weaveable Ti Wire/TiO2 Nanoporous Film Photoanodes and Their Photocatalytic Performance[J]. Development and Application of Materials, 2023, 38(6): 67-73.
Citation: LI Mengqi, LI Xiaolong, GU Xiaodong, SHEN Chensi, ZHANG Lisha. Study on Preparation of Flexible Weaveable Ti Wire/TiO2 Nanoporous Film Photoanodes and Their Photocatalytic Performance[J]. Development and Application of Materials, 2023, 38(6): 67-73.

柔性可编织Ti丝/TiO2纳米多孔膜光阳极的制备及其光电催化性能研究

基金项目: 

上海市自然科学基金(21ZR1402500);国家重点研发计划项目(2022YFB3804905,2022YFB3804900);福州大学能源与环境光催化国家重点实验室开放课题(SKLPEE-KF202101)

详细信息
    作者简介:

    李梦琦,女,2000年生,硕士,研究方向为柔性光热和光催化材料的制备及其性能研究。E-mail:lmq2946321882@163.com

  • 中图分类号: TB333

Study on Preparation of Flexible Weaveable Ti Wire/TiO2 Nanoporous Film Photoanodes and Their Photocatalytic Performance

  • 摘要: 半导体光电催化是一种可高效降解各类污染物的技术,其关键在于开发高效、易回收且性能稳定的光阳极。利用阳极氧化法在柔性Ti丝表面原位生长TiO2纳米多孔薄膜,最终制得的薄膜孔径约为85 nm,厚度约为10 μm。Ti丝/TiO2纳米多孔膜复合物具有良好的柔性,将其编织成质量为0.25 g、面积约为36 cm2的织物光阳极,并进行光电催化实验。结果表明:光照下,随着偏压从0 V增加到0.6 V,光电流从0 mA上升至0.32 mA。在0.6 V外加电压以及可见光光照120 min后,溶液中的罗丹明B降解效率高达87.8%,明显高于光催化时的60.0%和电催化时的3.6%。循环使用4次后,光阳极仍对罗丹明B保持着85.0%的降解效率,展现了良好的稳定性。因此,Ti丝/TiO2纳米多孔膜光阳极在光电催化降解污染物上具有较好的应用前景。

     

  • [1] 钱伯章. 固氮合成氨有了高效光催化剂[J]. 大氮肥, 2018, 41(4):219.
    [2] CAO D, WANG Y B, ZHAO X. Combination of photocatalytic and electrochemical degradation of organic pollutants from water[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 6:78-84.
    [3] CUI R R, SHEN Q, GUO C Y, et al. Syngas electrosynthesis using self-supplied CO2 from photoelectrocatalytic pollutant degradation[J]. Applied Catalysis B:Environmental, 2020, 261:118253.
    [4] TANG B, ZHANG J, YANG N J, et al. Selective p-hotoelectrocatalytic removal of environmental pollutants on molecular imprints decorated TiO2 single crystalline nanoarrays[J]. Chemical Engineering Journal, 2020, 383:123188.
    [5] GU X D, YU N, ZHANG L S, et al. Growth of TiO2 nanorod bundles on carbon fibers as flexible and weaveable photocatalyst/photoelectrode[J]. RSC Advances, 2015, 5(124):102868-102876.
    [6] CHEN J R, QIU F X, XU W Z, et al. Recent progress in enhancing photocatalytic efficiency of TiO2 based materials[J]. Applied Catalysis A:General, 2015, 495:131-140.
    [7] LIU Y, MU K S, ZHONG J D, et al. Design of a solardriven TiO2 nanofilm on Ti foil by self-structure modifications[J]. RSC Advances, 2015, 5(52):41437-41444.
    [8] XU T Z, ZHENG H, ZHANG P Y, et al. Photocatalytic degradation of a low concentration pharmaceutical pollutant by nanoporous TiO2 film with exposed{001}facets[J]. RSC Advances, 2016, 6(98):95818-95824.
    [9] ZHOU Y, HUANG Y, LI D, et al. Fabrication of nanoporous TiO2 films with novel surface morphology on conducting glass (FTO) substrate[J]. Journalof Central South University, 2012, 19(10):2740-2745.
    [10] KAO L H, CHEN Y P. Characterization, photoelectrochemical properties, and surface wettabilities of transparent porous TiO2 thin films[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 340:109-119.
    [11] WANG W, TAO J, WANG T, et al. Photocatalytic activity of porous TiO2 films prepared by anodic oxidation[J]. Rare Metals, 2007, 26(2):136-141.
    [12] JANG M, LEE H, LEE W. Large area honeycomb-structured TiO2 film for photocatalytic water splitting[J]. ACS Applied Nano Materials, 2020, 3(1):131-137.
    [13] XU T Z, ZHAO H C, ZHENG H, et al. Atomically Pt implanted nanoporous TiO2 film for photocatalytic degradation of trace organic pollutants in water[J]. Chemical Engineering Journal, 2020, 385:123832.
    [14] FAGAN-MURPHY A, KATARIA S, PATEL B A. Electrochemical performance of multi-walled carbon nanotube composite electrodes is enhanced with larger diameters and reduced specific surface area[J]. Journal of Solid State Electrochemistry, 2016, 20(3):785-792.
    [15] ZAZPE R, SOPHA H, PRIKRYL J, et al. 1D conical nanotubular TiO2/CdS heterostructure with superior photon-to-electron conversion[J]. Nanoscale, 2018, 10(35):16601-16612.
    [16] 顾晓栋. 可编织衬底上TiO2纳米材料的制备及其光电催化降解污染物的性能研究[D]. 上海:东华大学, 2015.
    [17] SU Z, LI H P, CHEN P, et al. Novel heterostructured InN/TiO2 submicron fibers designed for high performance visible-light-driven photocatalysis[J]. Catalysis Science & Technology, 2017, 7(21):5105-5112.
    [18] 滕伟. 可见光响应TiO2基复合纳米管阵列的制备及其在降解水中有机污染物的性能研究[D]. 大连:大连理工大学, 2013.
    [19] WU J, XU H, YAN W. Photoelectrocatalytic degra-dation Rhodamine B over highly ordered TiO2 nanotube arrays photoelectrode[J]. Applied Surface Science, 2016, 386:1-13.
  • 加载中
计量
  • 文章访问数:  28
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 网络出版日期:  2024-01-10

目录

    /

    返回文章
    返回