留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉淀强化型因瓦合金研究概况

李春辉 侯世忠 吕晓辉 杨晓

李春辉, 侯世忠, 吕晓辉, 杨晓. 沉淀强化型因瓦合金研究概况[J]. 材料开发与应用, 2022, 37(5): 86-90.
引用本文: 李春辉, 侯世忠, 吕晓辉, 杨晓. 沉淀强化型因瓦合金研究概况[J]. 材料开发与应用, 2022, 37(5): 86-90.
LI Chunhui, HOU Shizhong, LÜ Xiaohui, YANG Xiao. Current Situation of Precipitate Strengthened Invar Alloy[J]. Development and Application of Materials, 2022, 37(5): 86-90.
Citation: LI Chunhui, HOU Shizhong, LÜ Xiaohui, YANG Xiao. Current Situation of Precipitate Strengthened Invar Alloy[J]. Development and Application of Materials, 2022, 37(5): 86-90.

沉淀强化型因瓦合金研究概况

详细信息
    作者简介:

    李春辉,男,1993年生,硕士,助理工程师。E-mail: 18437955231@163.com

    通讯作者:

    杨晓,男,1985年生,博士,高级工程师。E-mail: y19850419h@126.com

  • 中图分类号: TG14

Current Situation of Precipitate Strengthened Invar Alloy

  • 摘要: 简要对比了因瓦合金细晶强化、固溶强化、加工硬化与沉淀强化等4种强化机制,总结了沉淀强化型因瓦合金的研究现状,并对高强度因瓦合金的发展提出了展望。

     

  • [1] SAHOO A, MEDICHERLA V R R. Fe-Ni invar alloys: a review[J]. Materials Today: Proceedings, 2021, 43: 2242-2244.
    [2] WASSERMANN E F. The invar problem[J]. Journal of Magnetism and Magnetic Materials, 1991, 100(1-3): 346-362.
    [3] VAN SCHILFGAARDE M, ABRIKOSOV I A, JOHANSSON B. Origin of the Invar effect in iron-nickel alloys[J]. Nature, 1999, 400(6739): 46-49.
    [4] SHIGA M. Invar alloys[J]. Current Opinion in Solid State and Materials Science, 1996, 1(3): 340-348.
    [5] 刘江. 低膨胀合金的应用和发展[J]. 金属功能材料, 2007, 14(5): 33-37.
    [6] 王锦辉. 中国液化天然气(LNG)船建造现状浅析[J]. 江苏船舶, 2004, 21(4): 8-9.
    [7] VINOGRADOV A, HASHIMOTO S, KOPYLOV V I. Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni Invar alloy[J]. Materials Science and Engineering: A, 2003, 355(1-2): 277-285.
    [8] CHEN C X, MA B J, MIAO S N, et al. Effect of cobalt on microstructure and mechanical properties of invar alloy[C]//Advances in Materials Processing, 2018: 855-864.
    [9] 陶志刚. 析出相对因瓦和超因瓦合金热膨胀和力学性质的作用[J]. 金属材料研究, 1995(4): 33-36.
    [10] GULYAEV A, SVISTUNOVA E L. Anomalies in temperature dependence of mechanical properties and thermal expansion of age hardenable invar alloy Fe-40%Ni-0.8% Be[J]. Scripta Materialia, 1996, 35(4): 501-504.
    [11] GULYAEV A A, SVISTUNOVA E L. Precipitation process and age-hardenability of Fe-Ni-Be invar alloys[J]. Scripta Metallurgica et Materialia, 1995, 33(9): 1497-1503.
    [12] 罗长增, 李华, 魏涛, 等. 轻质γ-TiAl合金材料在柴油发动机上的应用[J]. 材料开发与应用, 2021, 36(3): 50-57.
    [13] ClARK B R, PICKERINF B. Precipitation effects in austenitic stainless steels containing titanium and aluminium additions [J]. Journal of the Iron and Steel Institute, 1967, 205: 70.
    [14] SINGHAL L. Strengthening mechanisms in γ' harden-ed nickel base alloys [J]. Scripta Metallurgica, 1971, 5(11): 959-964.
    [15] SRIDHARAN K, WORZALA F J, DODD R A. Heat treatment and microstructure of an Fe–Ni–Co Invar alloy strengthened by intermetallic precipitation[J]. Materials Characterization, 1992, 29(4): 321-327.
    [16] 陆建生, 倪和勇, 沈黎明. 时效强化Fe-Ni-Ti-Al因瓦合金的力学与膨胀特性[J]. 上海钢研, 2006(2): 31-34.
    [17] HA T K, LEE K D, SONG J H, et al. Effect of aging treatment conditions on the microstructure and strength of Fe-36Ni based invar alloy[J]. Key Engineering Materials, 2007, 345-346: 109-112.
    [18] LIU H W, SUN Z H, WANG G K, et al. Effect of aging on microstructures and properties of Mo-alloyed Fe-36Ni invar alloy[J]. Materials Science and Engineering: A, 2016, 654: 107-112.
    [19] 路东柱, 吴敏杰. 原位TiC颗粒增强Fe-36Ni因瓦合金的组织与性能[J]. 金属功能材料, 2014, 21(4): 9-13.
    [20] ZHANG J F, TU Y F, XU J, et al. Effect of solid solution treatment on microstructure of Fe-Ni based high strength low thermal expansion alloy[J]. Journal of Iron and Steel Research, International, 2008, 15(1): 75-78.
    [21] SUI Q S, HE J, ZHANG X, et al. Strengthening of the Fe-Ni invar alloy through chromium[J]. Materi-als (Basel, Switzerland), 2019, 12(8): 1297.
  • 加载中
计量
  • 文章访问数:  96
  • HTML全文浏览量:  19
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 网络出版日期:  2022-11-12

目录

    /

    返回文章
    返回